

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Selective Permeation of Ammonia and Carbon Dioxide by Novel Membranes

Daniel V. Laciak^a; Robert Quinn^a; Guido P. Pez^a; John B. Appleby^a; Pushpinder S. Puri^a

^a Corporate Science and Technology Center Air Products and Chemicals, Inc., Allentown, PA

To cite this Article Laciak, Daniel V. , Quinn, Robert , Pez, Guido P. , Appleby, John B. and Puri, Pushpinder S.(1990) 'Selective Permeation of Ammonia and Carbon Dioxide by Novel Membranes', *Separation Science and Technology*, 25: 13, 1295 – 1305

To link to this Article: DOI: 10.1080/01496399008050392

URL: <http://dx.doi.org/10.1080/01496399008050392>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SELECTIVE PERMEATION OF AMMONIA AND CARBON DIOXIDE BY NOVEL MEMBRANES

Daniel V. Laciak, Robert Quinn, Guido P. Pez, John B. Appleby
and Pushpinder S. Puri.

Corporate Science and Technology Center
Air Products and Chemicals, Inc.
7201 Hamilton Blvd.
Allentown, PA, 18195-1501.

ABSTRACT

Experimental results are presented on membranes of novel composition which selectively permeate ammonia and carbon dioxide from mixtures containing hydrogen. The CO₂-selective membrane, which consists of a thin liquid film of the salt hydrate tetramethylammonium fluoride tetrahydrate, exhibits a CO₂ permeance of 4.1×10^{-5} cm³/cm²•s•cmHg with selectivity, $\alpha(\text{CO}_2/\text{H}_2)$, ranging from 360-30. The NH₃-selective membrane, poly(vinylammonium thiocyanate), displays a high NH₃ permeance, 5.20×10^{-5} cm³/cm²•s•cmHg, with $\alpha(\text{NH}_3/\text{N}_2)$ as high as 3600 and $\alpha(\text{NH}_3/\text{H}_2)$ as high as 6000. Such membranes, which retain H₂ at pressure in the feed stream, may offer new opportunities in the design of separation processes.

INTRODUCTION

Polymeric membranes are gaining acceptance as an emerging technology in gas separation processes. For example, cellulose acetate membranes are now being used in large commercial installations for CO₂

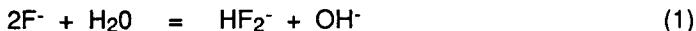
separations and polysulfone hollow fiber membranes are used to recover hydrogen in ammonia synthesis purge stream applications. Hydrogen, being the more permeable gas, is almost always recovered at low pressures. There are, however, some applications in which it would be desirable to retain hydrogen at pressure while permeating other components from the stream. For example, in ammonia synthesis plants the converter product stream contains NH₃ and unreacted N₂ and H₂ (and also smaller amounts of CH₄ and Ar). Incorporation of an NH₃-selective membrane, as first suggested by Kammermeyer (1), would be advantageous because the refrigeration loop could be significantly downsized while permitting unconverted H₂ and N₂ to be recycled to the converter with minimum compression energy. In the production of merchant hydrogen, carbon dioxide, which is a by-product of the steam reforming and CO-shift conversion steps, has to be removed from the hydrogen rich product gas. This is currently done using acid-gas scrubbing solvents which require thermal energy for their regeneration. An energy savings could result from using a membrane to selectively permeate a major portion of the CO₂ from the product stream, thus reducing the load on the scrubber. An economic implementation of these technologies requires stable membranes which possess not only high permeability towards NH₃ and CO₂ but also high selectivity over H₂. This goal cannot be realized using known organic polymer membranes because of their low selectivity, $\alpha(\text{CO}_2/\text{H}_2)$ and $\alpha(\text{NH}_3/\text{H}_2)$. The $\alpha(\text{NH}_3/\text{H}_2)$ of polyethylene membranes is 4 (1); that of a mixed-phase polyethylene glycol/silicone rubber membrane is 300 (2); aromatic polysulfonamide membranes have selectivity of 400 (3). The permselective properties of the latter were observed to degrade at temperatures above ca. 30°C. Membranes consisting of thin films of hydrated polymers can effect a separation of CO₂ from H₂ (4) but with a selectivity, $\alpha(\text{CO}_2/\text{H}_2) = 10$, which is too low to be useful.

We approached the problem of preparing highly permeable NH₃- and CO₂-selective membranes by seeking compositions, both liquid and polymeric, which would reversibly interact with these gases in a way that would enhance their transport through a membrane. In this paper we report preliminary results on such facilitated transport membranes. We describe the preparation of laboratory-scale membranes and demonstrate their effectiveness for separating CO₂ and NH₃ from mixtures with other gases, especially H₂.

MATERIALS

Tetramethylammonium fluoride tetrahydrate (TMAF•4H₂O) was used as supplied by Aldrich Chemical Co. The degree of hydration was checked before use by Karl-Fisher titration. Poly(vinylammonium thiocyanate)

(PVAmSCN) was prepared by ion-exchanging poly(vinylammonium chloride) with excess ammonium thiocyanate (NH_4SCN) (5). This method gave polymer which was approximately 80% in the SCN^- form. PVAmSCN was cast from a 5 wt% aqueous solution. Poly(trimethylsilylpropyne) (PTMSP) was polymerized and cast into films as described by Langsam et al (6).



EXPERIMENTAL

The test apparatus was similar to that used by Bateman (7). A blended gas mixture was constantly passed over one side of the membrane while the opposite side was continually swept by a helium stream leading into a gas chromatograph. For experiments involving CO_2 -selective membranes, the feed gas was presaturated with H_2O by passing it through a bank of bubblers maintained at 10°C. The membrane was sealed in a stainless steel test cell similar to that described by Otto (8) with the added provision for incorporation of a thin stainless steel frit to support the membrane. The membranes used in this work had an effective surface area of 3.8 cm^2 . Data gathered over 6 - 24 hours of steady-state operation were used to calculate the permeance of the respective gases.

RESULTS AND DISCUSSION

CO_2 -selective Membranes

Carbon dioxide-selective membranes are based on our discovery of a reversible reaction between CO_2 and molten tetramethylammonium fluoride tetrahydrate, $\text{TMAF}\cdot 4\text{H}_2\text{O}$ (mp 39-42°C) (9). This salt hydrate has an unusually large capacity for CO_2 as shown by the CO_2 absorption/desorption isotherm in Figure 1. The solubility of CO_2 in $\text{TMAF}\cdot 4\text{H}_2\text{O}$ at 50°C approaches 0.3 mol CO_2 /mol $\text{TMAF}\cdot 4\text{H}_2\text{O}$ at 80 cmHg CO_2 which corresponds to a solution which is approximately 2 molar in the gas. For comparison, the CO_2 concentration in pure H_2O at the same pressure and temperature is 0.02M (10) and 0.01M in a 3.4M aqueous NaCl solution (11). This reversible chemical reactivity arises from the following reactions occurring in the melt (12).

For evaluation purposes a membrane was constructed by supporting a thin layer of molten $\text{TMAF}\cdot 4\text{H}_2\text{O}$ on a 50 μm thick film of

poly(trimethylsilylpropyne), PTMSP. The latter is a highly gas permeable, nonporous polymer which was used to increase the mechanical stability of the liquid membrane without adding any significant mass transfer resistance (6). Gas permeabilities were determined at 50°C with both the feed (CO_2 , H_2) and permeate sweep gas (He) humidified to a dew point of 10°C. Results and other test conditions are given in Figure 2. The performance of the membrane is given in terms of gas permeance, P_0/l , in units of $\text{cm}^3(\text{STP}) \text{ gas/cm}^2 \text{ membrane area} \cdot \text{sec} \cdot \text{cmHg CO}_2$. At low CO_2 feed partial pressures there is a very effective separation of CO_2 from H_2 with selectivity, $\alpha(\text{CO}_2/\text{H}_2)$ approaching 370. The decrease in CO_2 permeance (P_0/l) with increasing CO_2 partial pressure is typical of many carrier-mediated facilitated transport systems and indicative of carrier saturation; this behavior is suggested by the Langmuir-like shape of the CO_2 absorption isotherm. The H_2 permeance was found to be independent of pressure indicating that it permeates by a solution-diffusion mechanism. Thus, the decrease in $\alpha(\text{CO}_2/\text{H}_2)$ is due to the decline in CO_2 permeance at higher CO_2 pressures; however, even at 80 cmHg CO_2 , the observed selectivity of 30 represents a significant improvement over the performance of polymeric CO_2/H_2 separation membranes.

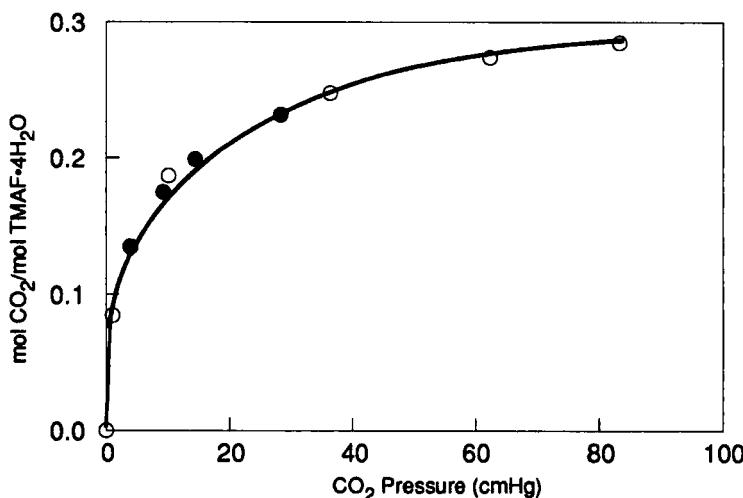


Figure 1. CO_2 Absorption Isotherm of TMAF·4H₂O at 50°C: (O) absorb, (●) desorb.

Our current understanding of the transport mechanism in TMAF·4H₂O membranes is that the CO_2 flux is augmented over that of other salt

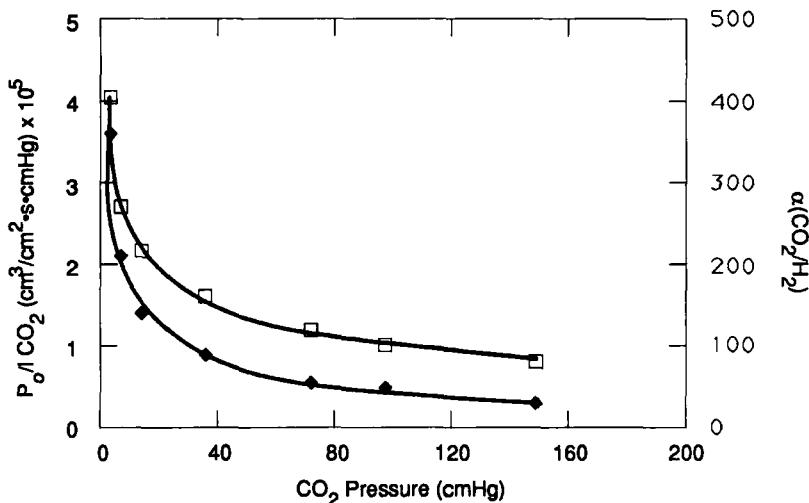
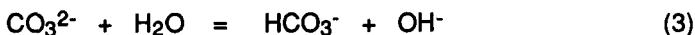



Figure 2. Performance of TMAF-4H₂O Membrane at 50°C. Feed gas=1:2 CO₂:H₂ @ 20 sccm; He sweep gas @76 cmHg, 10 sccm: (◻) P_o/1 CO₂, (◆) selectivity, α(CO₂/H₂).

solutions such as NaCl via the reactions shown above. Bicarbonate and bifluoride ions (equations 1 and 2) diffuse in a concentration gradient to the permeate side of the membrane where the reactions are reversed, liberating CO₂. Hydrogen, and to some extent CO₂, permeate by a conventional solution-diffusion mechanism. This carrier-mediated mechanism is similar to that reported for aqueous carbonate/bicarbonate CO₂ facilitated transport membranes (8) which involves the following reactions:

A quantitative analysis of the HCO₃⁻/HF₂⁻ mediated facilitated transport of CO₂ will be given in a future article (12).

NH₃ - selective Membranes

The ammonia-selective membranes are based on the reversible interaction of NH₃(g) with NH₄SCN and its derivatives (13,14). Crystalline NH₄SCN deliquesces under 80 cmHg NH₃ at 25°C to yield a colorless liquid solution (15-17). We immobilized this solution within a microporous nylon membrane and tested it for the separation of NH₃ from N₂. While good

permselectivity was achieved we found the membrane to be unstable at transmembrane pressures greater than about 1 atm. To overcome this problem we synthesized a polymeric analog of NH₄SCN; namely poly(vinylammonium thiocyanate), abbreviated PVAmSCN. The NH₃ absorption for this material at 30°C is shown in Figure 3. It has a high NH₃ absorption capacity, approximately 50 mmol NH₃/g PVAmSCN at 600 cmHg, and is not saturated over the pressure range measured. Whereas NH₄SCN deliquesces in an NH₃-rich atmosphere (17), absorption of NH₃ by PVAmSCN causes the polymer to visibly gel at pressures above ca. 150 cmHg NH₃. The high affinity of NH₄SCN, and hence of PVAmSCN, for NH₃ is postulated to arise from strong hydrogen bonding interactions of NH₃ with the NH₄⁺ and SCN⁻ ions (19). We ascribe the continuous absorption of NH₃ by PVAmSCN to the formation of ammoniates of composition PVAmSCN•xNH₃ where x = 1,2,3... mol NH₃/repeat unit of polymer.

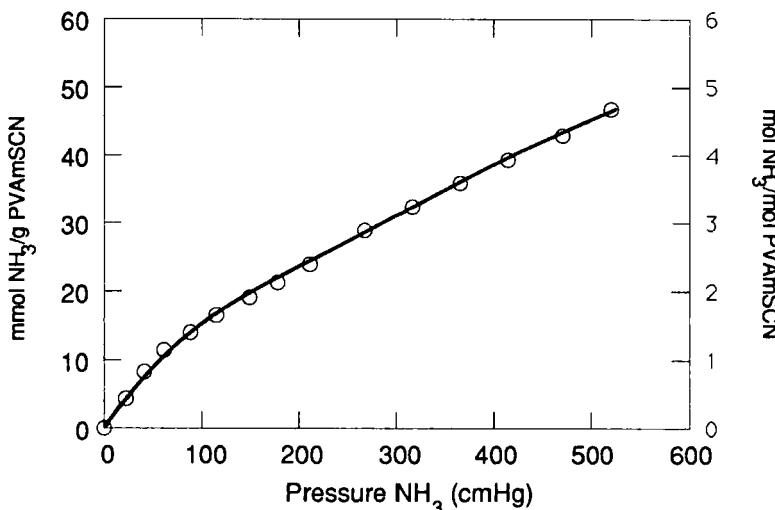


Figure 3. NH₃ Absorption Isotherm of PVAmSCN at 30°C.

A multilayer membrane consisting of a film of PVAmSCN (10 μ m thick) sandwiched between two 20 μ m thick films of PTMSP was prepared for testing. Again, the PTMSP films add no significant mass transfer resistance but were employed to add mechanical stability to the PVAmSCN as it gelled under the high NH₃ pressures of the test conditions. This membrane was evaluated at 30°C for the separation of NH₃ from a feed stream containing a 1:1 mixture of NH₃ and H₂. Results and other test conditions are given in

Table 1. It is evident that the composite membrane effectively permeates NH₃ from the mixture. Under the test conditions there is a high NH₃ permeance (P_0/I) and a favorable selectivity, $\alpha(NH_3/H_2)$, which ranges from approximately 1250 to 500. At 200 cmHg NH₃, for example, the standard NH₃ permeability is $2420 \times 10^{-10} \text{ cm}^3 \cdot \text{cm}/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg}$ while the H₂ permeability is only $5 \times 10^{-10} \text{ cm}^3 \cdot \text{cm}/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg}$ (20).

Table 1. Performance of PTMSP/PVAmSCN/PTMSP Multilayer Composite Membrane at 30°C.

<u>FEED GAS[†]</u>		<u>PERMEATE GAS^{††}</u>		
P(NH ₃) *	P(H ₂) *	P ₀ /I ** (NH ₃)	P ₀ /I ** (H ₂)	$\alpha(NH_3/H_2)$
78	78	5.54	nd	----
117	117	16.21	0.013	1245
155	155	22.27	0.027	825
194	194	24.21	0.046	525

† feed gas flow 30 sccm; †† He sweep gas @ 10sccm,
76cmHg; * cmHg; ** $\text{cm}^3/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg} \times 10^5$; nd=not detected.

An Arrhenius plot of the NH₃, N₂ and H₂ permeances is shown in Figure 4. Ammonia permeance decreases with increasing temperature due to its lower solubility in the membrane at higher temperatures (17). The N₂ and H₂ permeances exhibit only a small temperature effect and increase in accord with a solution-diffusion mechanism.

Unlike traditional facilitated transport membranes, the NH₃ permeability PVAmSCN does not diminish with increasing NH₃ pressure, but rather increases. The NH₃ permeability remains high presumably because of the multiplicity of NH₃ coordination to the polymer (Figure 3). The apparent increase in both NH₃ and H₂ permeance with increasing NH₃ pressure (Table 1) may be due to gellation of the polymer which results in an increased mobility of both gases. At this time we do not have a definitive mechanism which explains the rapid permeation of NH₃. Qualitatively, however, PVAmSCN may be viewed as a very good "solvent" for NH₃ which permeates via a solution-diffusion mechanism. Yet, based, on the strong interaction of NH₃ with the polymer (Figure 3 and ref 18), a carrier-mediated or other facilitated transport mechanism cannot be ruled out.

We also measured membrane performance at conditions closer to those of an actual industrial application; that is, at higher NH₃ partial pressures

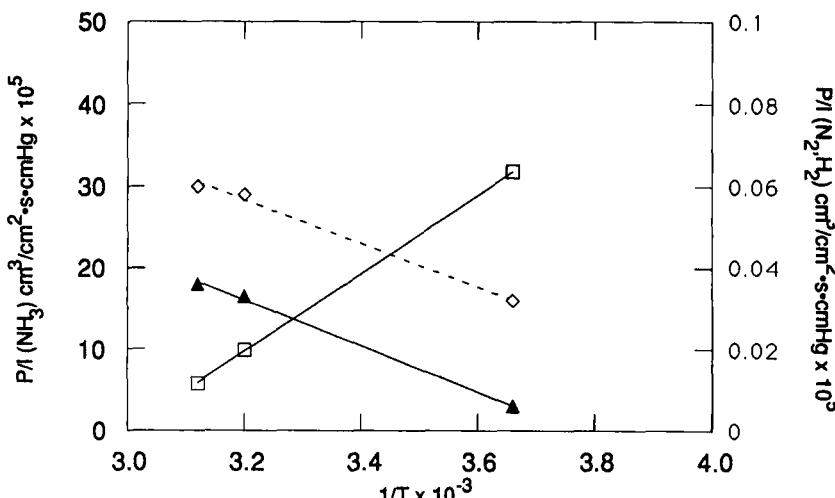


Figure 4. Arrenhius Plot for PTMSP/PVAmSCN/PTMSP Membrane. Feed gas = 1:1:1 NH₃:N₂:H₂ @ 390 cmHg, 45 sccm; He sweep gas @ 76 cmHg, 10sccm: (□)NH₃, (▲)N₂, (◊)H₂

and much higher total system pressure. For this experiment a PTMSP/PVAmSCN/PTMSP multilayer membrane was prepared as described above, however, for this evaluation the PVAmSCN layer was much thicker. The PTMSP films were each approximately 50 μ m thick. The composite membrane was evaluated at 30°C for the separation of NH₃ from H₂ and also N₂ under a constant NH₃ feed pressure of 595 cmHg and increasing pressures of N₂ and H₂. Results are shown in Table 2. Even at very high pressures the membrane still functions effectively. Ammonia permeance is ca. 5×10^{-5} cm³/cm²·s·cmHg with selectivity $\alpha(NH_3/N_2)$ and $\alpha(NH_3/H_2)$ of 3600 and 6000, respectively. The decrease in permeance of all NH₃ and N₂ with increasing feed pressure may result from densification of the PVAmSCN layer under transmembrane pressures of 2562 to 4239 cmHg (495 to 820 psi). Finally, when the membrane temperature is raised to 60°C the NH₃ permeance decreases as expected. This is accompanied by a small increase in the N₂ and H₂ permeances, most likely as a result of increased diffusion. None the less, an excellent separation is achieved.

CONCLUSIONS

We have shown that the separation of CO₂ from mixtures with H₂ and of NH₃ from mixtures with H₂ and N₂ can be achieved by employing

Table 2. Performance of PTMSP/PVAmSCN/PTMSP Multilayer Composite Membrane at High Transmembrane Pressures. Feed gas @ 60 sccm; He sweep gas @ 76 cmHg, 10 sccm.

TEMP (°C)	FEED GAS			PERMEATE GAS		
	P*(NH ₃)	P*(H ₂)	P [†] (N ₂)	P ₀ /I ^{**} (NH ₃)	P ₀ /I ^{**} (H ₂)	P ₀ /I ^{**} (N ₂)
24	595	612	1431	9.2	nd	0.0029
24	595	960	2241	6.0	nd	0.0020
24	595	1116	2604	5.4	0.0009	0.0015
60	595	1116	2604	3.2	0.0023	0.0016
						α(NH ₃ /N ₂)
						3170
						3000
						3600
						2000

* cmHg; ** cm³ / cm² · s · cmHg × 10⁵; nd = not detected

membranes comprising TMAF•4H₂O and PVAmSCN as the active separation media. These membranes functions by virtue of a high, reversible affinity for CO₂ and NH₃, respectively. Transport in the CO₂-TMAF•4H₂O system appears to involve a carrier-mediated facilitated mechanism. We have demonstrated that a multilayer PTMSP/PVAmSCN/PTMSP membrane is effective for the recovery of NH₃, even at high pressures. The membranes are unique in that H₂, usually the most permeable gas, is retained in the feed stream with high selectivity, a feature which may offer opportunities not possible with conventional polymeric membranes.

ACKNOWLEDGEMENTS

We wish to acknowledge the outstanding efforts of Mr. J.R. Gogatz for his help in performing gas permeation measurements and to Ms. D. Krause, and Drs. T.W. Lai, M. Langsam and R.K. Pinschmidt for their assistance in preparing PTMSP and PVAm. This research was supported in part by DOE Cooperative Agreement DE-AC07-88-ID12779.

REFERENCES

1. Brubaker, D.W. and Kammermeyer, K., Ind. Eng. Chem., **46**, 733 (1954).
2. Li, N.N., "Membrane Processes in the Petrochemical Industry", US Dept. of Energy, Report No. 12422-33, 1985.
3. Semonova, S.I., et al SU1063774, (1983).
4. Peterson, R.J. et al, "Research and Development on Membrane Processes for the Removal of Acid Gases During Coal Gasification", Energy Research and Development Administration, Report No. Fe-20008-5, 1975.
5. Dawson, D.J., Gless, R.D. and Wingard, R.E., US4018826 (1977).
6. Langsam, M., Anand, M., and Karwacki, E.J., Gas Sep. and Purif., **2**, 162, (1988).
7. Bateman, B.R., Way, J.D. and Larson, K.M., Sep. Sci. Tech., **19**, 21, (1984).
8. Otto, N.C. and Quinn, J.A., Chem. Eng. Sci., **26**, 949, (1971).

9. Quinn, R., Appleby, J.B. and Pez, G.P., US4780114, (1984).
10. Quinn, E.L. and Jones, C.L., "Carbon Dioxide", ACS Monograph. Series No. 72, Reinhold Pub. Co., 1932.
11. "Langes Handbook of Chemistry", J.A. Dean, ed., 12th ed., 1979, p. 10-4.
12. Quinn, R., Appleby, J.B. and Pez, G.P., manuscript in preparation.
13. Laciak, D.V. and Pez, G.P., US4758250, (1988).
14. Pez, G.P. and Laciak, D.V., US4762535, (1985).
15. Bradely, W.P. and Alexander, W.B., J. Am. Chem. Soc., **34**, 15, (1912).
16. Foote, H.W., and Hunter, M.A., J. Am. Chem. Soc., **42**, 69 (1920).
17. Fraser, L.H.D. Jr., Refrig. Eng., **29**, 20 (1932).
18. Lemely, A.T. and Lagowski, J.J., J. Phys. Chem., **78**, 708, (1974).
19. Berthold, H.J. et al, Angew. Chem. Int. Ed. Engl., **27**, 1524, (1988).
20. Permeance (P_0/l) was converted to permeability (P_0) using a membrane thickness determined by scanning electron microscopy of the composite membrane before permeation testing.